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Abstract-The abundant literature on tensile strength and fracture energy size effects as well as the
newly-introduced fractal and renormalization group theories would appear to indicate the need for
a dramatic change in our conceptual framework, if we want to consider and measure material
constants in Strength of Materials as well as in Fracture Mechanics. For disordered materials, such
as for example concrete and rocks, the renormalized tensile strength is given by a force acting on a
surface having a fractal dimension lower than 2, just as the renormalized fracture energy is rep
resented by a dissipation over a surface with a dimension higher than 2. In the case of tensile
strength, the dimensional decrement represents self-similar weakening of the reacting cross section
or ligament, due to pores, voids, defects, cracks, aggregates, inclusions, etc. Likewise, in the case of
fracture energy, the dimensional increment represents self-similar tortuosity of the fracture surface,
due to aggregates and inclusions, as well as self-similar microcrack overlapping and distribution
also in the direction orthogonal to that of the forming macrocrack. It can be demonstrated that the
sum of the dimensional decrement (for material ligament) and the dimensional increment (for
fracture surface) must be lower than unity.

INTRODUCTION

Renormalization group theories have been shown to be necessary in many branches of
physics, whenever many length or energy scales are present in the problem to be solved.
These problems include quantum field theory, statistical mechanics, turbulence, blasting
(Wilson, 1971, 1979; Barenblatt, 1979; Herrmann and Roux, 1990), etc.

Several physical phenomena can be analysed through continuum mechanics, whenever
only one length or energy scale is relevant, namely the macroscopic scale. On the other
hand, it is generally true that, where a critical phenomenon (e.g., material failure) is
imminent, also other length or energy scales become relevant together with the macroscopic
one: they represent those microscopic or mesoscopic phenomena that are interacting and
concurring to produce the macroscopic phenomenon. Continuum mechanics has been the
basis for structural mechanics for more than a century. Only recently has it emerged that
damage, strain localization, and fracture phenomena are not always interpretable in the
framework of continuum mechanics. In particular, the scale effects on strength and tough
ness have not found satisfactory explanations (Carpinteri, 1986). The reason for this has
to be sought in the fact that the micromechanical damage phenomena, and thus the inherent
disorder of the material, have been disregarded. A dramatic dichotomy is still present
between, on the one hand, structural engineers, who pay close attention to macroscopic
phenomena and whose models present an excessive regularity, and, on the other, material
scientists, who devote greater attention to microscopic phenomena and whose models
present an excessively local character.

The present paper represents an attempt to break down these barriers by adopting
approaches that are completely new for solid mechanics, i.e., fractal geometry (Mandelbrot,
1982; Falconer, 1990) and renormalization group theory (Wilson, 1971, 1979; Barenblatt,
1979; Herrmann and Roux, 1990). This is the only way to provide a rational and consistent
explanation of the size scale effects on tensile strength and fracture energy of disordered
materials. For size scale tending to zero, tensile strength tends to infinity, whereas fracture
energy tends to zero. The renormalized counterparts of such properties are instead constant

t Transmitted by Professor B. L. Karihaloo (Board of Editors).
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and tend to render their physical roles coincident when a condition of extreme disorder is
achieved at small size scales.

FRACTAL NATURE OF MATERIAL LIGAMENT AND SIZE EFFECTS ON NOMINAL TENSILE
STRENGTH

It is well-known that the nominal tensile strength of many materials undergoes very
clear size effects. The usual trend is that of a strength decrease with size, and this is more
evident for disordered (i.e. macroscopically heterogeneous and/or damaged) materials.
Griffith (1921) explained the strength size effect in the case of glass filaments, assuming the
existence of inherent microcracks of a size proportional to the filament cross-sectional
diameter. Some years later Weibull (1939) gave a purely statistical explanation to the same
phenomenon according to the weakest-link-in-a-chain concept. Only recently have the two
views been harmonized, enriching the empirical approach of Weibull with the phenom
enological assumption of Griffith (Freudenthal, 1968; Jayatilaka, 1979; Carpinteri, 1989a).
A statistical size distribution of self-similarity may be defined (Carpinteri, 1986, I989a) for
which the most dangerous defect proves to be of a size proportional to the structural
size. This corresponds to materials presenting a considerable dispersion in the statistical
microcrack size distributions (disordered materials). In this case, the power of the LEFM
stress singularity, 1/2, turns out to be the slope of the strength vs size decrease in a
bilogarithmic diagram. When the statistical dispersion is relatively low (ordered materials)
the slope is less than 1/2 and tends to zero for regular distributions (perfectly ordered
rnaterials) .

Although the above-described view contains the fractal concept of self-similarity, this
is circumscribed only to the defect of maximum size, whereas the disordered nature of the
material microstructure is completely disregarded. The real nature of the material will be
herein described using a more complex fractal model, where the property of self-similarity
is extended to the whole defect population. This model represents a more realistic picture
of reality and is consistent with the fractal explanation of the fracture energy size effect,
which will be proposed in the next section. On the other hand, as will be shown, slope
values higher than 1/2 would represent, with both models, a degree of disorder that is so
high as to be usually absent in real materials.

Let us assume that the reacting section or ligament of a disordered material at peak
stress could be represented as a fractal space of dimension r:t. = 2- du, with I < r:t. ~ 2 and,
therefore, 0 ~ du < 1. The dimensional decrement du may be due to the presence of cracks
and voids and hence, generally, to a cross-sectional weakening. Let us consider two bodies,
geometrically similar and made up of the same disordered material [Fig. I (a)]. If the ratio
of geometrical similitude is equal to b and the renormalized tensile strength (1~ is assumed
to be a material constant and to have the physical dimensions [force] x [length]-(2-d.), we
have:

(1)

F 1 and F 2 being the ultimate tensile forces acting on the two bodies respectively.
On the other hand, the apparent nominal tensile strengths are respectively:

(2a)

(2b)

where the latter, according to eqn (1), becomes:
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Fig. 1. (a) Size-scaled bodies; (b) correlated size-scale effects on tensile strength; and (c) fracture
energy.

(3)

We can write the relationship between nominal strengths related to different sizes in
logarithmic form:

In (Ju = In (Ju(l) - d" In b. (4)

Equation (4) represents a straight line with slope -d" in the In (Ju vs In b plane [Fig.
I (b)].

An alternative way to explain the decrease of the nominal tensile strength with specimen
size is that ofconsidering a sequence of scales of observation. If the total force Ftransmitted
to the specimen is invariant with respect to the scale of observation, we have:
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where the first scale of observation could be the macroscopic one, with alA I = auA, A being
the cross-sectional area, and the asymptotic scale of observation could be the microscopic
one, with aooA oo = a:A*, A* being the measure of the fractal set representing the damaged
ligament.

From the equality between the extreme members of eqn (5) we get:

(6)

and therefore:

(7)

with b equal to the characteristic dimension of the cross section. From eqn (7) we can get
a generalization of eqn (4) :

lnau = lna:-d"lnb. (8)

Renormalization group relations analogous to eqn (8) have been proposed by Wilson
(1971, 1979) in quantum field theory and statistical mechanics, as well as by Barenblatt
(1979) in the intermediate asymptotics description of turbulence and blasting.

Confirmation of eqn (4) has been provided by several previous investigations, carried
out on different metallic and cementitious materials and with different specimen geometries.
These results are summarized in Carpinteri (1989a). The same trends have been found also
in two recent experimental programmes aimed at evaluating the true tensile properties of
concrete. A completely new testing apparatus made up of three orthogonally disposed
actuators, was utilized at the Politecnico di Torino so that it was possible to perform a true
direct tensile experiment on concrete, whereas usually tension and bending are both present.
As may be seen from Fig. 2(a), the slope of the strength decrease proved to be equal to
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Fig. 2. Experimental results obtained by the author (a) at the Politecnico di Torino and (b) in
collaboration with ENEL-CRIS-Milano and ISMES-Bergamo.
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0.14, thus revealing a material ligament of dimension 1.86, i.e. a fractal set which is very
close to a two-dimensional surface. It may be noted that the specimen sizes explored in this
investigation ranged over four values of the width: 5, 10, 20 and 40 em. The fractal nature
of the material ligament emerges very clearly at such scales. On the other hand, the property
of self-similarity is very likely to vanish or change at higher or lower scales, owing to the
limited character of the granulometric curve.

A higher slope of strength decrease was obtained in an experimental research study
performed at ISMES-Bergamo, using pre-notched concrete cylinders of diameter 12, 18,24
and 30 em, respectively [Fig. 2(b)]. The exponent 0.41 is closer to the LEFM limit 0.5,
which is valid for disordered materials (high statistical dispersion), and at the same time
implies a very weak fractal ligament of dimension 1.59 at peak stress.

FRACTAL NATURE OF FRACTURE SURFACE AND SIZE EFFECTS ON FICTITIOUS FRACTURE
ENERGY

It is well-known how the fracture surfaces of metals (Mandelbrot et at., 1984) and
concrete (Saouma et at., 1990) present a fractal nature with a roughness producing a
dimensional increment with respect to the number 2. Even in this case we can detect an
evident mechanical consequence, considering the size effects on fracture energy '§F. Since
Hillerborg's proposal for a concrete fracture test was published as RILEM Recom
mendation (1985), several researchers have measured a fracture energy '§F which increases
with the specimen sizes and, more specifically, with the size ofthe uncracked ligament. Such
a trend has been systematically found, and in each case the authors of the papers describing
these experiments have tried to provide various empirical or phenomenological expla
nations, without, however, endeavouring to interpret their findings in a larger conceptual
framework. On the other hand, if we wish to understand the experimental observations, it
is necessary to abandon the classical thermodynamic concept of surface energy of an ideal
solid, and to assume the energy dissipation to be occurring in a fractal space of dimension
Q( = 2+c4, with 2 :;;;; Q( < 3 and, therefore, 0 :;;;; c4.< I. This represents an attenuation of
fracture localization due to material heterogeneity and multiple cracking.

Let us consider two bodies, geometrically similar and made up of the same disordered
material [Fig. I(a)]. If the ratio of geometrical similitude is equal to b and the renormalized
fracture energy '§! is assumed to be a material constant and to have the physical dimensions
[force] x [Iength]-(l+d\y), we obtain:

(9)

WI and W2 being the energies dissipated in the two bodies respectively.
On the other hand, the apparent fictitious fracture energies are respectively:

'§(2) _ W 2
F - b2 ,

where the latter, according to eqn (9), becomes:

(lOa)

(lOb)

(11)

We can write the relationship between fracture energies related to different sizes in
logarithmic form :
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(12)

Equation (12) represents a straight line with slope d'§ in the In '§F vs In b plane [Fig.
I(c)].

An alternative way of explaining the increase of the fracture energy with specimen size
is that of considering a sequence of scales of observation. If the total energy W dissipated
by fracture is invariant with respect to the scale of observation, we have:

where the first scale of observation could be the macroscopic one, with '§ IA I = '§FA, A
being the cross-sectional area, and the asymptotic scale of observation could be the micro
scopic one, with '§:DAOC = %-~*, A* being the measure of the fractal set representing the
irregular fracture surface.

From the equality between the extreme members of eqn (13) we get:

(14)

and therefore

(15)

with b equal to the characteristic dimension of the cross section. From eqn (15) we can get
a generalization of eqn (12)

In '§F = In '§1+d'§ Inb. (16)

On the other hand, if the pioneering work of Griffith (1921) is revisited considering a
fractal crack of projected length 2a, the fundamental relation of energy balance becomes:

(17)

and therefore

(18)

From eqn (18) we get:

(19)

which represents the renormalized critical condition:

(20)

The generalized stress-intensity factor Kf presents the following physical dimensions:
[F] [L] - (3 +d(f)/2. When d(f = 0, we find again the classical relations of Griffith and Irwin.
When d(f = I, as a limit case, we find that the stress singularity vanishes and Kf assumes
the physical dimensions of stress. Similar dimensional transitions have been analysed by
the writer for strain-hardening materials in the presence of cracks (Carpinteri, 1983) and
for linear elastic materials in the presence of re-entrant corners (Carpinteri, 1987).
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The same trends of eqn (12) have been found in recent experimental studies. Tensile
testing performed at the Politecnico di Torino has provided a plot slope equal to 0.38 [Fig.
2(a»), which allows a constant (universal) energy parameter to be obtained in the case where
the dissipation is considered as occurring in a damaged space of dimension 2.38. Tensile
testing at ISMES-Bergamo [Fig. 2(b)] has provided a plot slope very close to the LEFM
singularity 1/2, namely 0.48, and thus a fractal dimension 2.48, which implies a very
disordered material. It is interesting to note that the range of self-similarity does not extend
to the largest size for '§F, just as it does not extend to the smallest size for (Ju. So the ranges
of self-similarity for fracture energy and tensile strength do not necessarily coincide.

CONDITIONS OF EXTREME DISORDER

Let us consider a set of similar bodies with a multitude of imperfections (cracks, voids,
etc.) ofa given size distribution. If the imperfections with the most dangerous shape produce
a stress-singularity ,-"(0 < A~ Dand present a probability density p(a) of size distribution
[Fig. 3(a, b)], and if p(a) is such that the maximum size amax is proportional to the linear
scale b, then the strength size effect will be represented by a linear In (Ju vs In b diagram
with slope - A. The above hypothesis is very restrictive and is valid only when the size
distribution p(a) presents particular properties.

If p is the density of imperfections (number of imperfections per unit volume), the
maximum size amax can be defined as follows:

(2Ia)

q> and 8 being the longitude and the latitude of the defect orientation. If a geometrically
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Fig. 3. (a) Geometrically similar bodies with many random defects; (b) defect size distribution of
self-similarity and (c) cumulative distribution of self-similarity.
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similar body of characteristic size kb is considered and the above hypothesis is assumed
[Fig. 3(a)), we can write:

3 1
p(kb) p(kama.M.a 4n 2 !lcp!l9 = 1. (21b)

Since ama• is a function of p and b, besides the ranges !la, !lcp, !l9 of defect size,
longitude, and latitude, respectively, it follows that eqns (21) must be valid for any defect
size a. Therefore it follows that:

p(a) = k 3p(ka), Va» ii, Vk E R+,

and then function p assumes the form [Fig. 3(b))

C
p(a) = 3' Va» ii,

a

(22)

(23)

where C is a constant with the physical dimension of a length and ii is the average defect
size. Equation (23) will be referred to as the defect size distribution of self-similarity. The
related cumulative distribution function P is :

i
o

iOO 10
CP(a)= p(x)dx= p(x)dx+ 3dx,

o 0 an X
(24)

where ao » ii is the value beyond which the decreasing branch of function p can be
approximated by eqn (23). Carrying out the integrations in eqn (24), we obtain:

(25)

Since for a ~ 00 the cumulative distribution P(a) ~ 1

and then [Fig. 3(c))

with

C
P(a) = 1- 2a 2

(26)

(27)

(28)

Generally speaking, when the condition ofself-similarity is not satisfied, the cumulative
distribution function P will have the following form :

with

C
P(a) = 1- NaN' for a > avo (29)
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(30)

where N(l < N < 00) is an exponent measuring the degree of disorder. In this case, the
strength size effect can be represented by a linear In (1u vs In b diagram with slope -AN

(31)

where the exponent' depends on the secondary features of the material (e.g. density of
defects, size distribution of the less dangerous defects, etc.). The probability density of size
distribution in the general case-see eqn (29)-is:

dP C
p(a) = da = aN+ I fora> aM (32)

which becomes eqn (23) when N = 2.
Equation (31) shows that the size effect vanishes when A= 0 (e.g. spherical pores)

and/or when N -. 00 (nearly constant defect size), On the other hand, the size effect becomes
enormous when N -.1 (very large dispersion in the defect size distribution).

Let us assume now that the defect size distribution is not that ofself-similarity but one
with a larger dispersion (1 < N < 2). The maximum defect size amax can be defined as in
eqn (2Ia), whereas the maximum defect size for a geometrically similar body of charac
teristic size kb (k > I) will be given by a power law of the form :

(33)

with P> 1.
Thus, eqn (21 b) can be replaced by the following:

Equating eqn (2Ia) and eqn (34), and eliminating the subscript max, we obtain:

p(a) = k 3p(kfJ a),

and then, introducing eqn (32), we determine the exponent Pas a function of N :

3
P= N+ I'

(34)

(35)

(36)

It is not difficult to verify that, in the previous assumption and for sufficiently large
sizes, the maximum defect proves to be larger than the body itself. In fact, eqns (33) and
(36) give:

(37)

which is a nonlinear function of k, whereas the characteristic size of the body increases
linearly with k:

b(k) = kb = k amax(l) .e
The maximum defect is larger than the body itself:

(38)
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amax(k) ~ b(k),

k ~ ~(N- 2l/(N+ I) > 1.

(39)

(40)

It is possible therefore to conclude that the defect size distribution of self-similarity is
that corresponding to the maximum disorder.

From eqn (31) it is now possible to deduce the maximum slope of the strength decrease
diagram. This is provided by three concurrent conditions:

(l) linear elastic material;
(2) Griffith cracks (A = 1/2);
(3) maximum disorder (N = 2, i.e., self-similarity).

The slope 1/2 appears to be a theoretical upper bound, which is never exceeded in the
experimental results reported in the relevant literature.

On the other hand, the zero slope (horizontal line) is the theoretical lower bound,
which is given by even just one of the following three conditions:

(1) elastic-perfectly plastic material;
(2) pores not producing stress-singularity (A = 0) ;
(3) maximum order (N -> 00, i.e., Dirac-c5 distribution).

CORRELATED RENORMALIZATION FOR STRENGTH AND TOUGHNESS

As regards the dimensional decrement da, corresponding to the slope AN defined in eqn
(31), as well as the dimensional increment d<§, previously defined for the fracture energy,
experimentally they both appear always comprised in the interval [0, ~]. The dimensional
decrement da tends to the LEFM limit ~ only for extremely brittle and disordered materials,
as also does the dimensional increment d<§. The explanation for the latter bound could arise
for Dimensional Analysis reasons. A generalization of the brittleness number defined by
the writer (Carpinteri, 1982, 1985, 1989b) could in fact be the following:

(41)

If we postulate that the reversal of the physical roles of toughness and strength is
absurd, the exponent of the characteristic linear size b must be positive:

da +d<§ < 1. (42)

The sum of the dimensional decrement (for material ligament) and the dimensional
increment (for fracture surface) must therefore be lower than unity. On the other hand,
when for very disordered materials we have da ~ ~, the upper bound of eqn (42) becomes
d<§ ~ 1-

The above fractal interpretations could be regarded by some as purely mathematical
abstractions, if not indeed distortions of reality. The truth is that both classical geometrical
domains and fractal geometry loci are idealizations of reality. The question that should be
answered is the following: which model is closer to a real fracture trajectory in a concrete
specimen, a straight line or the von Koch curve? Of course the latter, even though the
fractal nature of the fracture trajectory is random and valid only in a limited scale range. This
means that, for size scales tending to infinity, or, in other words, for very large specimens,
tensile strength au and fracture energy '§F may appear constant by varying the specimen
size, whereas, for size scales where random self-similarity holds, the so-called "universal
properties" of the system (a:, '§,) are constant, although they are represented by physical
quantities with unusual dimensions. The last result represents the target of the so-called
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Fig. 4. (a) Multifractal scaling laws for tensile strength and (b) fracture energy. Bilogarithmic
diagrams.

"renormalization" procedure (Wilson, 1971, 1979), i.e. the determination of physical
quantities that are invariant under a change of length scale.

In physical reality, both material ligaments at peak stress and fracture surfaces after
rupture can be considered as multifractals (Mandelbrot, 1982; Falconer, 1990), of dimen
sion 1.5 and 2.5, respectively, at small scales, and dimension 2 at large scales. This means
that, at large scales, the disorder is not visible, the size of the heterogeneities being limited.
A transition from extreme disorder (slope 1/2) to extreme order (zero slope) may therefore
be evidenced in both diagrams, namely In au vs In b and In '§F versus In b (Fig. 4). Probably,
for even smaller scales, a chaotic disorder could prevail over the maximum fractal disorder
with slope 1/2.

The asymptotic trends of tensile strength and fracture energy can be described also in
the corresponding proportional diagrams as in Fig. 5. For size scale tending to zero, tensile
strength tends to infinity, whereas fracture energy tends to zero. Renormalization group
theory, already applied in other branches of science, is able to provide a definitive and
correlated explanation of the size effects on strength and toughness. We should recall the
first attempt by Griffith (1921) to give some rational explanation to the strength increase
by decreasing the cross-sectional area of glass filaments [Fig. 6(a)]. At the same time,
Dimensional Analysis can provide us with some pointers to explaining the toughness
decrease by decreasing specimen size, when stress-intensification does not develop at the
crack tip (Carpinteri, 1982) [Fig. 6(b)]. In both cases the experimentalist presumes that he
is measuring a material property, even though another critical phenomenon, and one not
related to the same property, is occurring. In either case he ignores one of the two par
ameters-KIC or au-along with the related failure mechanism. The explanations provided
by Dimensional Analysis are relatively simplistic, since au and '§Fare considered as material
constants. In the real physical world, not only do au and '§F not appear to be constant as
the size scale varies, but also the renormalized counterparts of these two parameters tend

0".. (8) ~F (b)

b b

Fig. 5. (a) Multifractal scaling laws for tensile strength and (b) fracture energy. Proportional
diagrams.
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(a)

b b

Fig. 6. Classical scaling laws provided by Dimensional Analysis. (a) Tensile strength variation
according to Griffith and (b) fracture toughness variation for totally notch-insensitive specimens.

to render their physical roles coincident for very disordered materials or, in any case, at
very small size scales.
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